Dissociating the Roles of the Cerebellum and Motor Cortex During Adaptive Learning
ثبت نشده
چکیده
Adaptation to a novel visuomotor transformation has revealed important principles regarding learning and memory. Computational and behavioral studies have suggested that acquisition and retention of a new visuomotor transformation are distinct processes. However, this dissociation has never been clearly shown. Here, participants made fast reaching movements while unexpectedly a 30-degree visuomotor transformation was introduced. During visuomotor adaptation, subjects received cerebellar, primary motor cortex (M1) or sham anodal transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation known to increase excitability. We found that cerebellar tDCS caused faster adaptation to the visuomotor transformation, as shown by a rapid reduction of movement errors. These findings were not present with similar modulation of visual cortex excitability. In contrast, tDCS over M1 did not affect adaptation, but resulted in a marked increase in retention of the newly learned visuomotor transformation. These results show a clear dissociation in the processes of acquisition and retention during adaptive motor learning and demonstrate that the cerebellum and primary motor cortex have distinct functional roles. Furthermore, they show that it is possible to enhance cerebellar function using tDCS.
منابع مشابه
Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns.
Adaptation to a novel visuomotor transformation has revealed important principles regarding learning and memory. Computational and behavioral studies have suggested that acquisition and retention of a new visuomotor transformation are distinct processes. However, this dissociation has never been clearly shown. Here, participants made fast reaching movements while unexpectedly a 30-degree visuom...
متن کاملAstrocytes in Molecular Layer of Cerebellum after Spatial Learning
Introduction: Previous studies have suggested that the cerebellum is a primary site of motor learning. The cerebellar cortex has a particular glial architecture with large astroglial cells. In addition, more recent works have revealed that astrocytes play a more active role in neuronal activity. The aim of this study was to evaluate the number of astrocytes in the molecular layer of rat's cere...
متن کاملAltered cerebellar functional connectivity mediates potential adaptive plasticity in patients with multiple sclerosis.
BACKGROUND The cerebellum is of potential interest for understanding adaptive responses in motor control in patients with multiple sclerosis because of the high intrinsic synaptic plasticity of this brain region. OBJECTIVE To assess the relative roles of interactions between the neocortex and the cerebellum using measures of functional connectivity. METHODS A role for altered neocortical-ce...
متن کاملبررسی اثر تحریکات الکتریکی مغز بر میزان یادگیری و مهارت حرکتی در افراد سالمند سالم: مروری نظام مند
Background and purpose: Aging is associated with brain changes and reduction in motor skill acquisi­tion that can limit its functional capacity. One of the effective interventions is using transcranial direct current stimulation (tDCS). The aim of this systematic review was to assess the effect of tDCS on learning and motor skill in healthy older adults. Materials and methods: A litera...
متن کاملDestructive Effects of Prenatal WIN 55212-2 Exposure on Central Nervous System of Neonatal Rats
Background: Cannabinoid, particularly hashish and WIN 55212-2 (WIN), consumption during embryonic period may affect fetal growth, and the development of motor functioning, memory and cognitive functions. Therefore, the present study aimed to evaluate the effects of WIN 55212-2 during embryonic period on behavioral responses, as well as tissue and memory changes among neonatal rats. Methods: WIN...
متن کامل